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Abstract. In this paper, we address a new type of coverage problem
in mobile sensor network, named Line K-Coverage. It guarantees that
any line cutting across a region of interest will be detected by at least K
sensors. We aim to schedule an efficient sensor movement to satisfy the
line K-coverage while minimize the total sensor movements for energy
efficiency, which is named as LK-MinMovs problem. We propose a pio-
neering layer-based algorithm LLK-MinMovs to solve it in polynomial
time. Compared with a MinSum algorithm from previous literature to
solve line 1-coverage problem, LLK-MinMovs fixes a critical flaw after
finding a counter example for MinSum. We further construct two time-
efficient heuristics named LK-KM and LK-KM+ based on the famous
Hungarian algorithm. By sacrificing optimality a little bit, these two
algorithms runs extremely faster than algorithm LLK-MinMovs. We val-
idate the efficiency of our designs in numerical experiments and compare
them under different experiment settings.

1 Introduction

Wireless Sensor Network (WSN) nowadays attracts special attentions from sci-
entific and technological community. Coverage is a fundamental problem among
all challenges of WSN. Broadly speaking, coverage is a measure that determines
how well a sensor network monitors objectives. Many variations of coverage
problem have been proposed for different applications. As an example, the area
K-coverage problem requires that each point in the area be covered by at least
K sensors.
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Barrier coverage is more applicable to monitor borders due to exploiting less
sensors than area coverage. In front of or surrounding an area, a barrier is a
belt-like region in which the sensors are spread. The barrier is said to be K-
covered [2,3] if every path that passes through the barrier touches the sensing
range of at least K sensors. Many researchers considered line track rather than
arbitrary pathes for barrier coverage [4–7], since in reality intruders usually go
through a region with a line track. Moreover, intruders do not know any knowl-
edge on distribution of sensors, they cannot figure out a “smart” path to follow.
In [16], the authors proposed a MinSum algorithm to build a barrier by schedul-
ing mobile sensors, so that any line intrusion will be detected by at least one
sensor. We refer this problem as Line 1-Coverage problem.

In this paper, we consider an advance version of line 1-coverage problem:
Line K-Coverage. A line is said to be K-covered if it is detected by at least
K sensors. A region is called line K-covered if any line intrusion is K-covered.
Usually, sensors at their initial positions may not form a line K-cover for the
target region. Thus mobile sensors could move according to some strategy to
form a line K-cover. For energy efficiency purpose, we hope that sensors will
move with a shortest distance. In all, our optimization object is to minimize the
sum of sensor movements to achieve the line K-cover for target region. We refer
it as LK-MinMovs problem.

If the initial sensors deployment does not form a line K-cover, the target
region will have “gaps” (K-uncovered intervals) against the intrusion. Due to the
structural complexity, it is not easy to form line K-cover in one shot. A natural
idea is to build line K-cover layer by layer because gaps have different degrees.
We first fill up 1-level gaps by twofold overlaps, and then fill up 2-level gaps by
threefold overlaps, until K-level gaps are filled. With this idea we propose a layer-
based algorithm named LLK-MinMovs. For one layer repairing, a MinSum was
proposed in a previous literature [16]. However, although authors in [16] claimed
that MinSum outputs the optimal solution, it is not always correct. We illustrate
the critical flaw of MinSum by a counter example, and fix the problem in our
LLK-MinMovs algorithm. We also construct another two time-efficient heuristics
named LK-KM and LK-KM+ based on the famous Hungarian algorithm. By
sacrificing optimality a little bit, these two algorithms runs extremely fast with
suboptimal results. We analyze the time complexity of them, and then validate
their efficiency in numerical experiments under different experiment settings. To
the best of our knowledge, we firstly solve the line K-coverage problem in mobile
sensor networks, which has both theoretical and practical significance.

The rest of the paper is organized as follows. Section 2 introduces some
related works. Section 3 presents the problem statement. Section 4 describes our
layer-based algorithm (LLK-MinMovs) and gives its time complexity analysis.
A counter example for MinSum is also introduced and corrected. In Sect. 5, we
design LK-KM and its enhanced version LK-KM+. Numerical experiments are
presented in Sect. 6. Finally, Sect. 7 gives conclusion.
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2 Related Works

In the research area of mobile sensor networks, several recent literatures consid-
ered the strategy of mobile sensor movement to cover a region of interest, for
example [9,10]. Unlike the problem considered in this paper, they aimed to form
an area coverage rather than barrier coverage for the region of interest.

Some of the existing works focus on line coverage [8] in a region. Baumgartner
et al. [5] proposed the track coverage problem. Their objective is to place a set
of sensors in the region such that the chance of detecting the path tracks by at
least some given number of sensors is maximized. Other path coverage metrics
are defined in [6,7] by analytical expressions for any random deployment in a
region. Balister et al. [4] defined a coverage metric called trap coverage which
measures the longest distance an intruder can achieve within the region before
touching the sensing range of any sensor.

In terms of mobile sensor for barrier, distributed algorithms are proposed
in [11] to schedule mobile sensors for forming a barrier. Bar-Noy et al. [12]
studied the problem of maximizing the coverage lifetime of a barrier composed
by mobile sensors with limited battery powers. How to guide sensor moving to
improve the quality of barrier coverage are studied in [13]. All of them consider
barrier coverage for path, this is not the objective of this paper. We focus on
line K-coverage.

Czyzowicz’s work [16] is most related to our objective. The authors proposed
MinSum algorithm for line 1-coverage problem which inspired us to design the
LLK-MinMovs algorithm. However, MinSum cannot always output an optimal
solution. We provide a counter example and correct it in our design, so that LLK-
MinMovs could work optimally for arbitrary instance. We also provide numerical
experiments to compare LLK-MinMovs with MinSum when K = 1.

3 Problem Statement

Assume our region of interest is a rectangle with horizontal length of L (otherwise
we can use the minimum bounding rectangle of this region). n sensors s1, s2, ..., sn
are randomly deployed in this region. Each sensor si has coordinator (xi, yi),
regarding to left-bottom point (0, 0), with same sensing range R. Sensors can
move freely in this region, but they are supported by nonrenewable battery
powers.

Figure 1 is an example scenario (Assume K = 3), where the intrusion direc-
tion is vertical against the rectangle. Hence, we could project si horizontally as
a line segment represented by interval [xi − R, xi + R]. Then, we just need to
consider our problem on line segment [0, L]. To better describe our problem, we
label sensors with their x-coordinate, and assume each sensor has distinct xi

value in increasing order. Note that we should have “enough” sensors to satisfy
a line K-coverage. Thus, initially we have 2Rn ≥ KL to get a feasible solution.

Easy to see, if we want to form a line K-coverage, every point along the x
axis in [0, L] should belong to as least K intervals transformed from sensors.
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Fig. 1. An example of line coverage transformation (K=3).

However, as shown in Fig. 1, there are many intervals on x axis that are covered
by less than K sensors, i.e. the interval [x4 +R,L]. We consider such intervals as
gaps. Thus, to form a line K-cover is equivalent as to fill up the gaps along x axis
after sensor projection. Note that gaps may have different degrees. Some gaps
are already covered by several sensors (but less than K), while some other gaps
are even bare. To describe a gap rigorously, we have the following definition.

Definition 1 (Line k-Covered Gap). A line k-covered gap, denoted as gapki ,
is an interval which starts from the ending point of sensor xi and ends up to the
starting point of sensor xi+k, say, the interval [xi + R, xi+k − R].

Easy to see, gapki is covered by k − 1 sensors, and xi+k − xi > 2R (otherwise
they will overlap to each other). Three example gaps are shown in Fig. 1, which
are line 1-covered gap10, line 2-covered gap25 and line 3-covered gap34. We add two
virtual sensors adhesively to the starting point and ending point of the target
region. In this example, s0 locates at x0 = −R, and s7 locates at x7 = L+R. To
illustrate our design, we have another definition for overlap intervals as follow.

Definition 2 (Line k-Covered Overlap). A line k-covered overlap, denoted
as overlapki , is an interval which starts from the starting point of sensor xi+k

and ends up to the ending point of sensor xi, say, the interval [xi+k −R, xi +R].

Similarly, overlapki is covered by k+1 sensors, and xi+k−xi < 2R (otherwise we
cannot find an overlap interval). Thus, some sensors could move to cover other
gaps. An example line 3-covered overlap33 is shown in Fig. 1, which is covered by
sensors x3, x4, x5, and x6 respectively.

We will move some sensors to fill up all gaps in [0, L]. Define the final position
of sensor si as xf

i . Then the moving distance di of si is |xf
i −xi|. The LK-MinMovs

problem is to find the final position for n sensors s1, s2, · · · , sn, so that these

sensors will form a line K-cover while the total sensor movements
n∑

i=1

|xf
i −xi| is

minimized. We require sensor movement schedule obeying an order preservation
restriction given by a Lemma in [16] and sensors cannot move out of [0, L].

In the following sections, we will introduce three algorithms to solve the
LK-MinMovs problem.
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4 A Layer-Based Algorithm for LK-MinMovs Problem

In our design, we plan to fill up the gaps in an ascending order of their coverage
degree. Correspondingly, we fill up line 1-covered gaps first, then line 2-covered
gaps, and so forth until filling the line K-covered gaps. During the procedure of
filling the line k-covered gaps, we can use the line k-covered overlaps. This strategy
is proved to be efficient and better than MinSum by experiments in Sect. 6.

4.1 LLK-MinMovs Algorithm

In our layer-based algorithm, named as LLK-MinMovs algorithm, we try to find
the two closest overlaps and select a cheaper one to fill a target gap. Note that
such movement process should maintain current coverage level. That means the
algorithm will not bring new gaps or downgrade the current coverage quality.

Algorithm 1 is the pseudo-code of LLK-MinMovs. The inputs are an array
X[1 . . . n] representing the initial positions of n sensors, the length of the region,
L, the coverage degree, K, and the sensor radius, R. It returns an array
Xf [1 . . . n] of n elements representing the final positions of sensors.

In Algorithm 1, Line 1 sets two virtual stable sensors to bound the region.
Line 2 depicts the layer-based procedure. At each level k ∈ [1,K], Algorithm 1
finds every line k-covered gap and fills them in a left-right order. The function
isCovered(i, k) in Line 4 is a binary function to determine whether the interval
[xi+R, xi+k−R] is line k-covered at current stage. If there exists a gapki , we find
its left and right closest overlaps as potential candidates (Line 5-6), compare the
cost to use them filling the gap according to cost functions Lcost(·) and Rcost(·),
pick up the cheaper one, and move corresponding sensors to fill up gapki according
a distance constraint function Ldist(·) and Rdist(·) to keep the current coverage
level (Line 7-9). The “while” loop from Line 4 to 9 guarantees that we will fill
up all k-covered gaps generated by each xi.

Algorithm 1. LLK-MinMovs

Input: X[1 . . . n], L, K, R
Output: The final positions Xf [1 . . . n] of n sensors

1 X[0] = −R, X[n + 1] = L + R;
2 for k ← 1 to K do
3 for i ← 0 to n do
4 while isCovered(i, k) = 0 do
5 l = find(gapki , left) ; // find the left closest overlapkl
6 r = find(gapki , right) ; // find the right closest overlapkr
7 if Lcost(i, l, k) ≤ Rcost(i, r, k) then
8 move(l, i, Ldist(l, i, k)) ; // fill gap by its left overlap

9 else move(i, r,−Rdist(i, r, k)) ; // fill gap by its right overlap

10 ;

11 return Xf [1 . . . n];
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Now, let us define the cost functions and distance constraint functions respec-
tively. At the beginning of every iteration, we say one sensor has negative shift
if it has moved to left and has positive shift if it has moved to right or stays still
compared to its initial position. Define shifti as the shift distance of xi.

Definition 3 (Left/Right Overlap Cost). For gapki , the lth to (l + k)th

sensors left to xi form overlapkl and the rth to (r+k)th sensors right to xi+k form
overlapkr . Let NSk

l (PSk
l ) be the set of sensors which have negative (positive)

shift among xl+k, xl+2k, · · · , xl+mk, · · · , xi sensors, where l+mk ≤ i. Let Sk
r be

the set of xr, xr−k, xr−2k, · · · , xr−mk, · · · , xi+k sensors, where r − mk ≥ i + k.
Then Eq. (1) computes the left/right overlap costs.

Lcost(l, i, k) = |PSk
l | − |NSk

l |, Rcost(i, r, k) = |Sk
r |. (1)

Definition 4 (Left/Right Overlap Shift Distance). Easy to know, the size
of gapki is xi+k − xi − 2R, the size of overlapkl and overlapkr are xl − xl+k + 2R
and xr − xr+k + 2R respectively. Let MinShift = min{|shifti| | xi ∈ NSk

l },
which is the effect shift window. Then the left/right shift distance are

{
Ldist(l, i, k) = min{xi+k − xi − 2R, xl − xl+k + 2R,MinShift},
Rdist(i, r, k) = min{xi+k − xi − 2R, xr − xr+k + 2R} (2)

4.2 A Counter Example for MinSum Algorithm

Note that the shifting cost for the left and right overlaps are different. The
left shifts for the right overlap only involve sensors whose shift values are zero or
negative, while the right shifts for the left overlap involve sensors will all possible
shift values. It is due to the left-to-right processing of the gaps. That means right
shift will benefit those sensors which have moved left. The authors in [16] also
considered the compensation by using similar cost functions for K = 1. However,
they did not consider the influence of right shift distance to the calculation of
Lcost(·). We find that only if the movement strategy considers the shift window
effect of the left overlap, the algorithm could work optimally. A counter example
is shown in Fig. 2.

In Fig. 2 (a) we give the original positions of 11 sensors. Figure 2 (b) shows
the situation when the first 3 gaps are filled, and there is still a gap17 with
size g which is greater than unit distance a lot. The results are same for our
algorithm and MinSum. We can see the left shifts of x4 and x6 are very small
(Assume x6 left shift 1 unit distance, x4 left shift 2 units distance). Now the
cost function Lcost(1, 7, 1) of overlap11 equals to 4 − 2 = 2 because 4 posi-
tive shifts (PS1

1 = {x2, x3, x5, x7}) and 2 negative shifts (PS1
1 = {x4, x6}).

The cost function Rcost(7, 10, 1) of overlap110 equals to 3 (Sk
10 = {x8, x9, x10}).

So overlap11 is the cheaper one. Figure 2 (c) shows the result using MinSum
which exploits overlap11 to fill gap17. Figure 2 (d) shows our algorithm uses the
effect moving window. Then Lcost(1, 7, 1) of overlap11 is evaluated again since
the negative shift of x6 changes to positive, thus Lcost(1, 7, 1) = 5 − 1 = 4.
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Fig. 2. A counter example to algorithm in [16] (K=1).

So overlap110 is the cheaper one. Figure 2 (e) shows the result after using overlap110
in our algorithm. MinSum fills gap17 with additional 6 · g − 2 · (2 + 1) · unit =
6·g−5·unit movements while LLK-MinMovs just uses additional 3·g movements.
Obviously, Our algorithm is better when g >> unit. This is because MinSum does
not consider the effect shift window which influences the cost calculation.

4.3 Time Complexity of LLK-MinMovs

For the LLK-MinMovs algorithm, there are K loops to cover each level gaps.
For each loop, we consider the total times of movements. There are two types of
movements, left-movement and right-movement. In each left-movement, either
a gap or a overlap will disappear, thus the total times of left-movements Tl ≤
Tol + Tgl, where Tol is the times of movement where an overlap disappears and
Tgl is the times of movement where an gap disappears. In each right-movement,
a gap or a overlap will disappear or a sensor is moved back to its initial location.
Similarly, we have Tr ≤ Tor + Tgr + Tb where Tb is the times of movement
where a sensor is moved back. Since in our algorithm, neither a new gap or a
new overlap will occur, we have Tgl + Tgr = |gaps|, Tol + Tor ≤ |overlaps| and
|gaps|+ |overlaps| < n. On the other hand, since any sensor will not move to the
left after moving to the right, Tb ≤ n. Thus we get the total times of movement
T = Tl +Tr < 2n. For each movement, we will at most move n sensors, thus the
time complexity is O(Kn2).

5 The Design of LK-KM and LK-KM+ Algorithms

We new design another two algorithms for LK-MinMovs problem based on the
famious Hungarian Algorithm. They have better time efficiency in spite of sac-
rificing the optimality a little bit. But their results are still sub-optimal.

The basic idea is to place the sensors to several fixed points evenly distributed
on the line segment [0, L]. Obviously, it is a perfect Line K-coverage to put K
sensors at each virtual fixed points with 2R distance between two neighbors.
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Then we construct a complete bipartite graph (S, P,E). S represents the sensor
set and P represents the virtual fixed point set. Each virtual fixed point has K
copies for K-coverage. The edge weight w(s, p) is L − distance(s, p), then the
maximum matching for P is the solution of original LK-MinMovs problem. We
can use the Kuhn-Munkres algorithm (also known as the famous Hungarian
algorithm) [14,15] to compute this matching. This algorithm is referred as LK-
KM algorithm shown in Algorithm 2.

Algorithm 2. LK-KM

Input: X[1 . . . n], L, K, R
Output: The final positions Xf [1 . . . n] of n sensors

1 Let S = {s1, s2, . . . , sn} and P = {d1, d2, . . . , dKL/(2R)} where dj
represents the point in R + (i(mod)K) · R

2 Let wi,j = L − dis(si, vi);
3 Using the Hungarian algorithm to compute a matching for (S, P,E);
4 for each wi,j that has been added up do
5 X[i] ← R + (i(mod)K) · R;

6 return Xf [1 . . . n]

Besides, we enhance the LK-KM algorithm with an idea to pull back the
sensors which do not need to go so far away from their original positions because
the sensor redundance provides the chance. The line K-coverage enhanced KM
algorithm, denoted as LK-KM+ uses PullToLeft(·) and PullToRight(·) are
added using a function move(·) for movement back of each sensor. We give an
example for function call on move(·) in PullToLeft, thus is move(iK+j, iK+j,
min(X[iK+j]−Xf [iK+j],Xf [iK+j+1]−Xf [iK+j],Xf [iK+j]−Xf [iK+
j − K]). It move xiK+j to left in a distance which is shortest one among its
shift distance, distance between it and its later neighbor, and distance between
it and its K-hops previous neighbor (they should form line K-cover together).
The similar procedure in PullToRight.

For LK-KM algorithm, the complexity is O((KL/2R)2n). And for LK-KM+
algorithm, in spite of adding move(·) steps using only O(n) time, the total
complexity of LK-KM+ is also O((KL/2R)2n), which is still better than LLK-
MinMovs.

6 Numerical Experiments

In experiments, we mainly compare our LLK-MinMovs with MinSum, LK-KM,
and LK-KM+. They are all implemented in C++. For each case, we ran each algo-
rithm 100 times at random inputs and calculate the average sum of movement.
We define the redundance rate as LK

2Rn . First of all, we verify that LLK-MinMovs
have the best performance for line 1-coverage, which proves that the MinSum
is not optimal. Let L = 1000, R = 5 and the results are shown in Fig. 3 (a).
LLK-MinMovs is the best and MinSum is better than LK-KM+.
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Next, we study the coverage level K. Here we set K = 1 to 10, L/R = 20
and redundance rate be 0.8. We can see LLK-MinMovs and LK-KM+ get more
superiority than LK-KM when coverage level K is increasing. Figure 3(b) gives
the results. In term of running time, Fig. 3(c) shows LK-KM+ outperforms LLK-
MinMovs much more when coverage level K is increasing.

Fig. 3. Comparison On LLK-MinMovs, MinSum and LK-KM+(LK-KM)

Then, we study influence on the result with different sensor redundance rate.
Besides, we conduct 3 groups of experiments on different L/R = 10, 20 and 40.
And we set L = 1000,K = 3. Figure 4 shows that in all cases LLK-MinMovs has
best performance. Three algorithms have the same result at redundance rate 1.
Sensors need move less distance when L/R becomes bigger. The LK-KM+ also
improves LK-KM very much and is very close to LLK-MinMovs.

Fig. 4. Experiments on redundance rate and L/R (L = 1000,K = 3).

7 Conclusion

In this paper, we address the Line K-coverage problem (LK-MinMovs) in mobile
sensor network. We first propose a polynomial time optimal layer-based algo-
rithm LLK-MinMovs. It fixes a critical flaw for the MinSum algorithm designed
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in [16] for line 1-Coverage problem. We also designed two sub-optimal but faster
algorithms, LK-KM and LK-KM+, based on Hungarian algorithm, which have
good time complexity O(K

2L2n
R2 ) in comparison with LLK-MinMovs of O(Kn2)

considering n is significantly bigger than K usually.
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